Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nat Cell Biol ; 26(1): 153-167, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38182825

RESUMEN

In the mammalian liver, hepatocytes exhibit diverse metabolic and functional profiles based on their location within the liver lobule. However, it is unclear whether this spatial variation, called zonation, is governed by a well-defined gene regulatory code. Here, using a combination of single-cell multiomics, spatial omics, massively parallel reporter assays and deep learning, we mapped enhancer-gene regulatory networks across mouse liver cell types. We found that zonation affects gene expression and chromatin accessibility in hepatocytes, among other cell types. These states are driven by the repressors TCF7L1 and TBX3, alongside other core hepatocyte transcription factors, such as HNF4A, CEBPA, FOXA1 and ONECUT1. To examine the architecture of the enhancers driving these cell states, we trained a hierarchical deep learning model called DeepLiver. Our study provides a multimodal understanding of the regulatory code underlying hepatocyte identity and their zonation state that can be used to engineer enhancers with specific activity levels and zonation patterns.


Asunto(s)
Aprendizaje Profundo , Multiómica , Ratones , Animales , Redes Reguladoras de Genes , Hígado/metabolismo , Hepatocitos , Mamíferos
2.
Nature ; 626(7997): 212-220, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086419

RESUMEN

Transcriptional enhancers act as docking stations for combinations of transcription factors and thereby regulate spatiotemporal activation of their target genes1. It has been a long-standing goal in the field to decode the regulatory logic of an enhancer and to understand the details of how spatiotemporal gene expression is encoded in an enhancer sequence. Here we show that deep learning models2-6, can be used to efficiently design synthetic, cell-type-specific enhancers, starting from random sequences, and that this optimization process allows detailed tracing of enhancer features at single-nucleotide resolution. We evaluate the function of fully synthetic enhancers to specifically target Kenyon cells or glial cells in the fruit fly brain using transgenic animals. We further exploit enhancer design to create 'dual-code' enhancers that target two cell types and minimal enhancers smaller than 50 base pairs that are fully functional. By examining the state space searches towards local optima, we characterize enhancer codes through the strength, combination and arrangement of transcription factor activator and transcription factor repressor motifs. Finally, we apply the same strategies to successfully design human enhancers, which adhere to enhancer rules similar to those of Drosophila enhancers. Enhancer design guided by deep learning leads to better understanding of how enhancers work and shows that their code can be exploited to manipulate cell states.


Asunto(s)
Células , Aprendizaje Profundo , Drosophila melanogaster , Elementos de Facilitación Genéticos , Biología Sintética , Animales , Humanos , Animales Modificados Genéticamente/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica , Factores de Transcripción/metabolismo , Células/clasificación , Células/metabolismo , Neuroglía/metabolismo , Encéfalo/citología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Proteínas Represoras/metabolismo
3.
Nat Biotechnol ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537502

RESUMEN

Single-cell assay for transposase-accessible chromatin by sequencing (scATAC-seq) has emerged as a powerful tool for dissecting regulatory landscapes and cellular heterogeneity. However, an exploration of systemic biases among scATAC-seq technologies has remained absent. In this study, we benchmark the performance of eight scATAC-seq methods across 47 experiments using human peripheral blood mononuclear cells (PBMCs) as a reference sample and develop PUMATAC, a universal preprocessing pipeline, to handle the various sequencing data formats. Our analyses reveal significant differences in sequencing library complexity and tagmentation specificity, which impact cell-type annotation, genotype demultiplexing, peak calling, differential region accessibility and transcription factor motif enrichment. Our findings underscore the importance of sample extraction, method selection, data processing and total cost of experiments, offering valuable guidance for future research. Finally, our data and analysis pipeline encompasses 169,000 PBMC scATAC-seq profiles and a best practices code repository for scATAC-seq data analysis, which are freely available to extend this benchmarking effort to future protocols.

4.
Nat Methods ; 20(9): 1355-1367, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37443338

RESUMEN

Joint profiling of chromatin accessibility and gene expression in individual cells provides an opportunity to decipher enhancer-driven gene regulatory networks (GRNs). Here we present a method for the inference of enhancer-driven GRNs, called SCENIC+. SCENIC+ predicts genomic enhancers along with candidate upstream transcription factors (TFs) and links these enhancers to candidate target genes. To improve both recall and precision of TF identification, we curated and clustered a motif collection with more than 30,000 motifs. We benchmarked SCENIC+ on diverse datasets from different species, including human peripheral blood mononuclear cells, ENCODE cell lines, melanoma cell states and Drosophila retinal development. Next, we exploit SCENIC+ predictions to study conserved TFs, enhancers and GRNs between human and mouse cell types in the cerebral cortex. Finally, we use SCENIC+ to study the dynamics of gene regulation along differentiation trajectories and the effect of TF perturbations on cell state. SCENIC+ is available at scenicplus.readthedocs.io .


Asunto(s)
Redes Reguladoras de Genes , Multiómica , Animales , Humanos , Ratones , Leucocitos Mononucleares , Regulación de la Expresión Génica , Cromatina/genética , Drosophila/genética , Elementos de Facilitación Genéticos
5.
Elife ; 122023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37133250

RESUMEN

Wound response programs are often activated during neoplastic growth in tumors. In both wound repair and tumor growth, cells respond to acute stress and balance the activation of multiple programs, including apoptosis, proliferation, and cell migration. Central to those responses are the activation of the JNK/MAPK and JAK/STAT signaling pathways. Yet, to what extent these signaling cascades interact at the cis-regulatory level and how they orchestrate different regulatory and phenotypic responses is still unclear. Here, we aim to characterize the regulatory states that emerge and cooperate in the wound response, using the Drosophila melanogaster wing disc as a model system, and compare these with cancer cell states induced by rasV12scrib-/- in the eye disc. We used single-cell multiome profiling to derive enhancer gene regulatory networks (eGRNs) by integrating chromatin accessibility and gene expression signals. We identify a 'proliferative' eGRN, active in the majority of wounded cells and controlled by AP-1 and STAT. In a smaller, but distinct population of wound cells, a 'senescent' eGRN is activated and driven by C/EBP-like transcription factors (Irbp18, Xrp1, Slow border, and Vrille) and Scalloped. These two eGRN signatures are found to be active in tumor cells at both gene expression and chromatin accessibility levels. Our single-cell multiome and eGRNs resource offers an in-depth characterization of the senescence markers, together with a new perspective on the shared gene regulatory programs acting during wound response and oncogenesis.


Asunto(s)
Proteínas de Drosophila , Neoplasias , Animales , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Redes Reguladoras de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Neoplasias/patología , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo
6.
Nat Commun ; 13(1): 7392, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450803

RESUMEN

Octopuses are mollusks that have evolved intricate neural systems comparable with vertebrates in terms of cell number, complexity and size. The brain cell types that control their sophisticated behavioral repertoire are still unknown. Here, we profile the cell diversity of the paralarval Octopus vulgaris brain to build a cell type atlas that comprises mostly neural cells, but also multiple glial subtypes, endothelial cells and fibroblasts. We spatially map cell types to the vertical, subesophageal and optic lobes. Investigation of cell type conservation reveals a shared gene signature between glial cells of mouse, fly and octopus. Genes related to learning and memory are enriched in vertical lobe cells, which show molecular similarities with Kenyon cells in Drosophila. We construct a cell type taxonomy revealing transcriptionally related cell types, which tend to appear in the same brain region. Together, our data sheds light on cell type diversity and evolution in the octopus brain.


Asunto(s)
Octopodiformes , Animales , Ratones , Octopodiformes/genética , Células Endoteliales , Encéfalo , Alimentos Marinos , Neuroglía , Drosophila
7.
Elife ; 112022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35195064

RESUMEN

Single-cell RNA-seq and single-cell assay for transposase-accessible chromatin (ATAC-seq) technologies are used extensively to create cell type atlases for a wide range of organisms, tissues, and disease processes. To increase the scale of these atlases, lower the cost and pave the way for more specialized multiome assays, custom droplet microfluidics may provide solutions complementary to commercial setups. We developed HyDrop, a flexible and open-source droplet microfluidic platform encompassing three protocols. The first protocol involves creating dissolvable hydrogel beads with custom oligos that can be released in the droplets. In the second protocol, we demonstrate the use of these beads for HyDrop-ATAC, a low-cost noncommercial scATAC-seq protocol in droplets. After validating HyDrop-ATAC, we applied it to flash-frozen mouse cortex and generated 7996 high-quality single-cell chromatin accessibility profiles in a single run. In the third protocol, we adapt both the reaction chemistry and the capture sequence of the barcoded hydrogel bead to capture mRNA, and demonstrate a significant improvement in throughput and sensitivity compared to previous open-source droplet-based scRNA-seq assays (Drop-seq and inDrop). Similarly, we applied HyDrop-RNA to flash-frozen mouse cortex and generated 9508 single-cell transcriptomes closely matching reference single-cell gene expression data. Finally, we leveraged HyDrop-RNA's high capture rate to analyze a small population of fluorescence-activated cell sorted neurons from the Drosophila brain, confirming the protocol's applicability to low input samples and small cells. HyDrop is currently capable of generating single-cell data in high throughput and at a reduced cost compared to commercial methods, and we envision that HyDrop can be further developed to be compatible with novel (multi) omics protocols.


Scientists are now able to determine the order of chemical blocks, or nucleic acids, that make up the genetic code. These sequencing tools can be used to identify which genes are active within a biological sample. They do this by extracting and analysing open chromatin (regions of DNA that are accessible to the cell's machinery), or sequences of RNA (the molecular templates cells use to translate genes into working proteins). Initially, most sequencing tools could only provide an 'averaged-out' profile of the genes activated in bulk pieces of tissue which contain multiple types of cell. However, advances in technology have led to new methods that can extract and analyse open chromatin or RNA from individual cells. First, the cells are separated, via a technique called microfluidics, into tiny droplets of water along with a single bead that carries a unique barcode. The cell is then broken apart inside the droplet and the barcode within the bead gets released and attaches itself to the genetic material extracted from the cell. All the genetic material inside the droplets is then pooled together and sequenced. Researchers then use the barcode tags to identify which bits of RNA or DNA belong to each cell. Single-cell sequencing has many advantages, including being able to pinpoint precise genetic differences between healthy and abnormal cells, and to create cell atlases of whole organisms, tissues and microbial communities. But existing methods for extracting chromatin are very expensive, and there were no openly available tools for processing thousands of cells at speed. Furthermore, while several single-cell RNA sequencing tools are already freely available, they are not very sensitive or practical to use. Here, De Rop et al. have developed a new open-source platform called HyDrop that overcomes these barriers. The method entails a new type of barcoded bead and optimised elements of existing microfluidics protocols using open-source reagents. These changes created a more user-friendly workflow and increased sensitivity of sequencing at no additional cost. De Rop et al. used their new platform to screen the RNA and open chromatin of thousands of individuals cells from the brains of mice and flies. HyDrop outperformed other open-source methods when working in RNA-sequencing mode. It also provides the first open-source tool for sequencing open chromatin in single cells. Further improvements are expected as researchers tweak the platform, which for now provides an affordable alternative to existing methods.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hidrogeles , Ratones , ARN , RNA-Seq , Análisis de la Célula Individual
8.
Genome Biol ; 23(1): 55, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35172874

RESUMEN

BACKGROUND: Multiplexing of samples in single-cell RNA-seq studies allows a significant reduction of the experimental costs, straightforward identification of doublets, increased cell throughput, and reduction of sample-specific batch effects. Recently published multiplexing techniques using oligo-conjugated antibodies or -lipids allow barcoding sample-specific cells, a process called "hashing." RESULTS: Here, we compare the hashing performance of TotalSeq-A and -C antibodies, custom synthesized lipids and MULTI-seq lipid hashes in four cell lines, both for single-cell RNA-seq and single-nucleus RNA-seq. We also compare TotalSeq-B antibodies with CellPlex reagents (10x Genomics) on human PBMCs and TotalSeq-B with different lipids on primary mouse tissues. Hashing efficiency was evaluated using the intrinsic genetic variation of the cell lines and mouse strains. Antibody hashing was further evaluated on clinical samples using PBMCs from healthy and SARS-CoV-2 infected patients, where we demonstrate a more affordable approach for large single-cell sequencing clinical studies, while simultaneously reducing batch effects. CONCLUSIONS: Benchmarking of different hashing strategies and computational pipelines indicates that correct demultiplexing can be achieved with both lipid- and antibody-hashed human cells and nuclei, with MULTISeqDemux as the preferred demultiplexing function and antibody-based hashing as the most efficient protocol on cells. On nuclei datasets, lipid hashing delivers the best results. Lipid hashing also outperforms antibodies on cells isolated from mouse brain. However, antibodies demonstrate better results on tissues like spleen or lung.


Asunto(s)
COVID-19/sangre , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Anticuerpos/química , Estudios de Casos y Controles , Línea Celular Tumoral , Núcleo Celular/química , Humanos , Lípidos/química , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neutrófilos/química , Neutrófilos/inmunología , Neutrófilos/virología
9.
Nature ; 601(7894): 630-636, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987221

RESUMEN

The Drosophila brain is a frequently used model in neuroscience. Single-cell transcriptome analysis1-6, three-dimensional morphological classification7 and electron microscopy mapping of the connectome8,9 have revealed an immense diversity of neuronal and glial cell types that underlie an array of functional and behavioural traits in the fly. The identities of these cell types are controlled by gene regulatory networks (GRNs), involving combinations of transcription factors that bind to genomic enhancers to regulate their target genes. Here, to characterize GRNs at the cell-type level in the fly brain, we profiled the chromatin accessibility of 240,919 single cells spanning 9 developmental timepoints and integrated these data with single-cell transcriptomes. We identify more than 95,000 regulatory regions that are used in different neuronal cell types, of which 70,000 are linked to developmental trajectories involving neurogenesis, reprogramming and maturation. For 40 cell types, uniquely accessible regions were associated with their expressed transcription factors and downstream target genes through a combination of motif discovery, network inference and deep learning, creating enhancer GRNs. The enhancer architectures revealed by DeepFlyBrain lead to a better understanding of neuronal regulatory diversity and can be used to design genetic driver lines for cell types at specific timepoints, facilitating their characterization and manipulation.


Asunto(s)
Drosophila , Regulación de la Expresión Génica , Animales , Encéfalo/metabolismo , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , Factores de Transcripción/metabolismo
10.
Elife ; 102021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34874265

RESUMEN

Understanding how enhancers drive cell-type specificity and efficiently identifying them is essential for the development of innovative therapeutic strategies. In melanoma, the melanocytic (MEL) and the mesenchymal-like (MES) states present themselves with different responses to therapy, making the identification of specific enhancers highly relevant. Using massively parallel reporter assays (MPRAs) in a panel of patient-derived melanoma lines (MM lines), we set to identify and decipher melanoma enhancers by first focusing on regions with state-specific H3K27 acetylation close to differentially expressed genes. An in-depth evaluation of those regions was then pursued by investigating the activity of overlapping ATAC-seq peaks along with a full tiling of the acetylated regions with 190 bp sequences. Activity was observed in more than 60% of the selected regions, and we were able to precisely locate the active enhancers within ATAC-seq peaks. Comparison of sequence content with activity, using the deep learning model DeepMEL2, revealed that AP-1 alone is responsible for the MES enhancer activity. In contrast, SOX10 and MITF both influence MEL enhancer function with SOX10 being required to achieve high levels of activity. Overall, our MPRAs shed light on the relationship between long and short sequences in terms of their sequence content, enhancer activity, and specificity across melanoma cell states.


Asunto(s)
Elementos de Facilitación Genéticos , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Factores de Transcripción SOXE/genética , Factor de Transcripción AP-1/genética , Línea Celular Tumoral , Humanos , Melanoma/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factores de Transcripción SOXE/metabolismo , Factor de Transcripción AP-1/metabolismo
11.
Genome Res ; 31(6): 1082-1096, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33832990

RESUMEN

Genomic sequence variation within enhancers and promoters can have a significant impact on the cellular state and phenotype. However, sifting through the millions of candidate variants in a personal genome or a cancer genome, to identify those that impact cis-regulatory function, remains a major challenge. Interpretation of noncoding genome variation benefits from explainable artificial intelligence to predict and interpret the impact of a mutation on gene regulation. Here we generate phased whole genomes with matched chromatin accessibility, histone modifications, and gene expression for 10 melanoma cell lines. We find that training a specialized deep learning model, called DeepMEL2, on melanoma chromatin accessibility data can capture the various regulatory programs of the melanocytic and mesenchymal-like melanoma cell states. This model outperforms motif-based variant scoring, as well as more generic deep learning models. We detect hundreds to thousands of allele-specific chromatin accessibility variants (ASCAVs) in each melanoma genome, of which 15%-20% can be explained by gains or losses of transcription factor binding sites. A considerable fraction of ASCAVs are caused by changes in AP-1 binding, as confirmed by matched ChIP-seq data to identify allele-specific binding of JUN and FOSL1. Finally, by augmenting the DeepMEL2 model with ChIP-seq data for GABPA, the TERT promoter mutation, as well as additional ETS motif gains, can be identified with high confidence. In conclusion, we present a new integrative genomics approach and a deep learning model to identify and interpret functional enhancer mutations with allelic imbalance of chromatin accessibility and gene expression.


Asunto(s)
Cromatina , Aprendizaje Profundo , Alelos , Inteligencia Artificial , Cromatina/genética , Regiones Promotoras Genéticas
12.
Nat Cell Biol ; 22(8): 986-998, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32753671

RESUMEN

Melanoma cells can switch between a melanocytic and a mesenchymal-like state. Scattered evidence indicates that additional intermediate state(s) may exist. Here, to search for such states and decipher their underlying gene regulatory network (GRN), we studied 10 melanoma cultures using single-cell RNA sequencing (RNA-seq) as well as 26 additional cultures using bulk RNA-seq. Although each culture exhibited a unique transcriptome, we identified shared GRNs that underlie the extreme melanocytic and mesenchymal states and the intermediate state. This intermediate state is corroborated by a distinct chromatin landscape and is governed by the transcription factors SOX6, NFATC2, EGR3, ELF1 and ETV4. Single-cell migration assays confirmed the intermediate migratory phenotype of this state. Using time-series sampling of single cells after knockdown of SOX10, we unravelled the sequential and recurrent arrangement of GRNs during phenotype switching. Taken together, these analyses indicate that an intermediate state exists and is driven by a distinct and stable 'mixed' GRN rather than being a symbiotic heterogeneous mix of cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Melanoma/genética , Línea Celular Tumoral , Movimiento Celular , Redes Reguladoras de Genes , Humanos , Melanoma/patología , Fenotipo , ARN Neoplásico , RNA-Seq , Factores de Transcripción SOXE/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
13.
Genome Res ; 30(12): 1815-1834, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32732264

RESUMEN

Deciphering the genomic regulatory code of enhancers is a key challenge in biology because this code underlies cellular identity. A better understanding of how enhancers work will improve the interpretation of noncoding genome variation and empower the generation of cell type-specific drivers for gene therapy. Here, we explore the combination of deep learning and cross-species chromatin accessibility profiling to build explainable enhancer models. We apply this strategy to decipher the enhancer code in melanoma, a relevant case study owing to the presence of distinct melanoma cell states. We trained and validated a deep learning model, called DeepMEL, using chromatin accessibility data of 26 melanoma samples across six different species. We show the accuracy of DeepMEL predictions on the CAGI5 challenge, where it significantly outperforms existing models on the melanoma enhancer of IRF4 Next, we exploit DeepMEL to analyze enhancer architectures and identify accurate transcription factor binding sites for the core regulatory complexes in the two different melanoma states, with distinct roles for each transcription factor, in terms of nucleosome displacement or enhancer activation. Finally, DeepMEL identifies orthologous enhancers across distantly related species, where sequence alignment fails, and the model highlights specific nucleotide substitutions that underlie enhancer turnover. DeepMEL can be used from the Kipoi database to predict and optimize candidate enhancers and to prioritize enhancer mutations. In addition, our computational strategy can be applied to other cancer or normal cell types.


Asunto(s)
Biología Computacional/métodos , Melanoma/genética , Pez Cebra/genética , Animales , Aprendizaje Profundo , Perros , Elementos de Facilitación Genéticos , Regulación Neoplásica de la Expresión Génica , Caballos , Humanos , Ratones , Porcinos
14.
Nat Protoc ; 15(7): 2247-2276, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32561888

RESUMEN

This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e., transcription factors and their target genes) assesses the activity of these discovered regulons in individual cells and uses these cellular activity patterns to find meaningful clusters of cells. Here we present an improved version of SCENIC with several advances. SCENIC has been refactored and reimplemented in Python (pySCENIC), resulting in a tenfold increase in speed, and has been packaged into containers for ease of use. It is now also possible to use epigenomic track databases, as well as motifs, to refine regulons. In this protocol, we explain the different steps of SCENIC: the workflow starts from the count matrix depicting the gene abundances for all cells and consists of three stages. First, coexpression modules are inferred using a regression per-target approach (GRNBoost2). Next, the indirect targets are pruned from these modules using cis-regulatory motif discovery (cisTarget). Lastly, the activity of these regulons is quantified via an enrichment score for the regulon's target genes (AUCell). Nonlinear projection methods can be used to display visual groupings of cells based on the cellular activity patterns of these regulons. The results can be exported as a loom file and visualized in the SCope web application. This protocol is illustrated on two use cases: a peripheral blood mononuclear cell data set and a panel of single-cell RNA-sequencing cancer experiments. For a data set of 10,000 genes and 50,000 cells, the pipeline runs in <2 h.


Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual/métodos , Flujo de Trabajo , Animales , Línea Celular Tumoral , Humanos , Ratones
15.
Mol Syst Biol ; 16(5): e9438, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32431014

RESUMEN

Single-cell technologies allow measuring chromatin accessibility and gene expression in each cell, but jointly utilizing both layers to map bona fide gene regulatory networks and enhancers remains challenging. Here, we generate independent single-cell RNA-seq and single-cell ATAC-seq atlases of the Drosophila eye-antennal disc and spatially integrate the data into a virtual latent space that mimics the organization of the 2D tissue using ScoMAP (Single-Cell Omics Mapping into spatial Axes using Pseudotime ordering). To validate spatially predicted enhancers, we use a large collection of enhancer-reporter lines and identify ~ 85% of enhancers in which chromatin accessibility and enhancer activity are coupled. Next, we infer enhancer-to-gene relationships in the virtual space, finding that genes are mostly regulated by multiple, often redundant, enhancers. Exploiting cell type-specific enhancers, we deconvolute cell type-specific effects of bulk-derived chromatin accessibility QTLs. Finally, we discover that Prospero drives neuronal differentiation through the binding of a GGG motif. In summary, we provide a comprehensive spatial characterization of gene regulation in a 2D tissue.


Asunto(s)
Cromatina/metabolismo , Drosophila/genética , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Análisis de la Célula Individual/métodos , Animales , Animales Modificados Genéticamente , Antenas de Artrópodos/metabolismo , Diferenciación Celular/genética , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , Bases de Datos Genéticas , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epigenómica , Ojo/crecimiento & desarrollo , Ojo/metabolismo , Ontología de Genes , Redes Reguladoras de Genes , Genómica , Inmunohistoquímica , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Fotorreceptoras/metabolismo , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Análisis Espacio-Temporal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
16.
Nat Methods ; 16(5): 397-400, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30962623

RESUMEN

We present cisTopic, a probabilistic framework used to simultaneously discover coaccessible enhancers and stable cell states from sparse single-cell epigenomics data ( http://github.com/aertslab/cistopic ). Using a compendium of single-cell ATAC-seq datasets from differentiating hematopoietic cells, brain and transcription factor perturbations, we demonstrate that topic modeling can be exploited for robust identification of cell types, enhancers and relevant transcription factors. cisTopic provides insight into the mechanisms underlying regulatory heterogeneity in cell populations.


Asunto(s)
Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Modelos Teóricos , Análisis de la Célula Individual/métodos , Animales , Células Sanguíneas/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Análisis por Conglomerados , Redes Reguladoras de Genes/genética , Humanos , Ratones , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de Secuencia de ARN , Flujo de Trabajo
17.
Nat Genet ; 50(7): 1011-1020, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29867222

RESUMEN

Transcriptional enhancers function as docking platforms for combinations of transcription factors (TFs) to control gene expression. How enhancer sequences determine nucleosome occupancy, TF recruitment and transcriptional activation in vivo remains unclear. Using ATAC-seq across a panel of Drosophila inbred strains, we found that SNPs affecting binding sites of the TF Grainy head (Grh) causally determine the accessibility of epithelial enhancers. We show that deletion and ectopic expression of Grh cause loss and gain of DNA accessibility, respectively. However, although Grh binding is necessary for enhancer accessibility, it is insufficient to activate enhancers. Finally, we show that human Grh homologs-GRHL1, GRHL2 and GRHL3-function similarly. We conclude that Grh binding is necessary and sufficient for the opening of epithelial enhancers but not for their activation. Our data support a model positing that complex spatiotemporal expression patterns are controlled by regulatory hierarchies in which pioneer factors, such as Grh, establish tissue-specific accessible chromatin landscapes upon which other factors can act.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Nucleosomas/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Sitios de Unión , Línea Celular Tumoral , Cromatina/genética , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Células Epiteliales , Regulación del Desarrollo de la Expresión Génica , Humanos , Células MCF-7 , Polimorfismo de Nucleótido Simple , Activación Transcripcional
18.
Cell ; 174(4): 982-998.e20, 2018 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-29909982

RESUMEN

The diversity of cell types and regulatory states in the brain, and how these change during aging, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting. Our data show high granularity and identify a wide range of cell types. Gene network analyses using SCENIC revealed regulatory heterogeneity linked to energy consumption. During aging, RNA content declines exponentially without affecting neuronal identity in old brains. This single-cell brain atlas covers nearly all cells in the normal brain and provides the tools to study cellular diversity alongside other Drosophila and mammalian single-cell datasets in our unique single-cell analysis platform: SCope (http://scope.aertslab.org). These results, together with SCope, allow comprehensive exploration of all transcriptional states of an entire aging brain.


Asunto(s)
Envejecimiento , Encéfalo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Análisis de la Célula Individual/métodos , Transcriptoma , Animales , Drosophila melanogaster/fisiología , Femenino , Perfilación de la Expresión Génica , Masculino
19.
Nat Methods ; 14(11): 1083-1086, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28991892

RESUMEN

We present SCENIC, a computational method for simultaneous gene regulatory network reconstruction and cell-state identification from single-cell RNA-seq data (http://scenic.aertslab.org). On a compendium of single-cell data from tumors and brain, we demonstrate that cis-regulatory analysis can be exploited to guide the identification of transcription factors and cell states. SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity.


Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual , Algoritmos , Animales , Encéfalo/metabolismo , Análisis por Conglomerados , Perfilación de la Expresión Génica , Humanos , Ratones
20.
Genome Biol Evol ; 9(6): 1821-1842, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854641

RESUMEN

Ecological genomics aims to understand the functional association between environmental gradients and the genes underlying adaptive traits. Many genes that are identified by genome-wide screening in ecologically relevant species lack functional annotations. Although gene functions can be inferred from sequence homology, such approaches have limited power. Here, we introduce ecological regulatory genomics by presenting an ontology-free gene prioritization method. Specifically, our method combines transcriptome profiling with high-throughput cis-regulatory sequence analysis in the water fleas Daphnia pulex and Daphnia magna. It screens coexpressed genes for overrepresented DNA motifs that serve as transcription factor binding sites, thereby providing insight into conserved transcription factors and gene regulatory networks shaping the expression profile. We first validated our method, called Daphnia-cisTarget, on a D. pulex heat shock data set, which revealed a network driven by the heat shock factor. Next, we performed RNA-Seq in D. magna exposed to the cyanobacterium Microcystis aeruginosa. Daphnia-cisTarget identified coregulated gene networks that associate with the moulting cycle and potentially regulate life history changes in growth rate and age at maturity. These networks are predicted to be regulated by evolutionary conserved transcription factors such as the homologues of Drosophila Shavenbaby and Grainyhead, nuclear receptors, and a GATA family member. In conclusion, our approach allows prioritising candidate genes in Daphnia without bias towards prior knowledge about functional gene annotation and represents an important step towards exploring the molecular mechanisms of ecological responses in organisms with poorly annotated genomes.


Asunto(s)
Proteínas de Artrópodos/genética , Daphnia/genética , Factores de Transcripción/genética , Animales , Proteínas de Artrópodos/metabolismo , Daphnia/clasificación , Daphnia/crecimiento & desarrollo , Daphnia/microbiología , Evolución Molecular , Redes Reguladoras de Genes , Genómica , Microcystis/fisiología , Filogenia , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...